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FOREWORD 

4 

This report  is prepared  a s  a self-contained technical document 

and submitted a s  P a r t  I of Final Report  in lieu of the Second Quarter ly  

Report .  It contains all technical resu l t s  obtained p r io r  to  May 28, 1967, 

and represents  a complete description of Phase  I of the contract  work that 

deals  with the impedance character is t ics  of thin conical shells under axial  

excitations. 

necessary  revision and corrections, has  been included here in  for  complete- 

. 
A par t  of the contents of the f i r s t  quar te r ly  report ,  with 

-c 

ness ,  and the f i r s t  quarter ly  report should be superseded by the present  

repor t .  

A digital computer program in  CDC 3600 F o r t r a n  Compiler Language - 
is submitted accompanying this report  a s  a par t  of the technical resu l t s  

obtained in Phase  I of the contract. 
I 
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ABSTRACT 

A combined analytical and experimental  study is presented to  

demonstrate that the t ransfer  mat r ix  or four-pole pa rame te r s  of a trun.- 

cated, thin conical shell, under axial excitations, m a y  be accurately 

obtained by applying membrane  shell  theory.  

cedure is  described, and the numerical  resu l t s  a r e  compared with t e s t  

A general  calculation p ro -  * 
data for  t h ree  shel l  models with semivertex angles 0", 15' and 30" over 

a frequency range f rom 20 to 600 cps .  The excellent agreement  indicates 

that the four -pole pa rame te r s  calculated through the present  analysis  a r e  

adequate for vibration analyses if the input excitation frequency i s  apprec i -  

ably lower than a theoretical  singularity on the frequency spectrum inherent 

t o  the membrane  shel l  theory.  If the excitation frequency i s  near  or  above 

this  singularity (around 6000 cps for the models considered),  a m o r e  

accura te  bending theory of shell  must  be used.  
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NOMENCLATURE 

a 

b 

C 

E 

F 

F11 F 2  

h 

L 

I 

M 

S 

S1 

radius of the major  base of the conical shell, or radius  of 
the cylindrical shell 

radius of the minor base of the conical shel l  

capacitance 

Young s m odulu s 

total  axial force transmitted through a shel l  c r o s s  section 

axial forces  at the input and output ends, respectively 

shell  thickness 

inductance 

length of cylindrical shell 

mass attached to output terminal  

total  m a s s  of the shell 

meridional and circumferential  s t r e s s  resul tants  in shell, 
r e s pe ct ively 

meridional  coordinate of conical shell, distance measu red  
f rom the apex 

meridional distance f rom apex to major  base  of conical 
shell  

t ime 

axial  displacement of a shell  c r o s s  section 

axial  displacements of input and output ends, respectively 

displacements of shell wall in meridional and outward 
normal  directions, respectively 

vi 



axial  velocity of input and output ends, respectively v2 
- 
X meridional coordinate of cylindrical shell, distance 

measured  f rom output end 

x = x / a  dimensionless coordinate of cylindrical  shell 

2119 212 driving point impedance and t r ans fe r  impedance, 
respectively 

Z1. Z 2 >  Z 3  equivalent impedance pa rame te r s  in mobility circuit  
analog 

a iJ four -pole parameters  

p 1J t ransfer  ma t r ix  

- y =  b / a  completeness parameter  

v Poisson ' s  ra t io  

5 = S / S l  dimensionless coordinate of conical shell  

P m a s s  density 
* 

R = U / W 0  dimensionless frequency 

W circular  frequency in r a d / s e c  

w o  = ( E / p ) 1 / 2 / a 2  
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INTRODUCTION 

. 

In recent  years ,  a growing in te res t  has  been directed toward the 

application of the mechanical impedance approach t o  analyze vibrations of 

complex s t ruc tu res (  e.g., Refs.  1-10).. Although derived f rom a r a the r  old 

concept in e lectr ical  engineering, the impedance technique and mechanical 

circuit  analysis offer a much needed, complementary alternative to  the 

normal-mode analysis  of structural  vibration problems.  

especially suitable and superior in obtaining s t ruc tura l  response informa- 

tion when the main excitation source may be definitely identified, such a s :  

massive,  rotating engines in a factory building; the rocket engine of a 

launch vehicle or  miss i le  structure;  the earthquake waves felt by founda- 

tions; o r  the power plant in a ship hull s t ruc ture .  

usually exer t  oscil latory forces  at some definite "singular points" of the 

s t ruc tures  and thus may excite a l a rge  number of normal  modes within a 

given frequency range. This multiplicity of modes wi l l  obviously fur ther  

amplify the analytical difficulties associated with s t ruc tura l  complexity, 

and often r ende r s  an accura te  normal mode analysis of the response 

impractical ,  i f  not infeasible. In this  c l a s s  of engineering problems, the 

impedance method not only makes available the systematic  techniques of 

circuit  analysis through electr ic  analogies, but a l so  allows a d i rec t  

correlat ion with tes t  data or  actual vibration r eco rd  of the s t ruc ture  

during operation. 

The fo rmer  i s  

These excitation sources  
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In order  to  develop the full advantage of the mechanical circuit  

analysis, prel iminary studies must be made  to  provide complete charac-  

t e r i s t i c  information for the basic s t ruc tura l  elementss such as:  lumped 

spr ing-mass  units, beams, plates, and shells of commonly used configura- 

tions. 

pole parameters )  may be used subsequently in analyzing any complex s t ruc -  

t u re s  containing such elements, which a r e  then replaced by the so-called 

"black box" in the mechanical circuit model for the ent i re  s t ruc ture ,  The 

present  study is  intended to  provide the impedance charac te r i s t ics  of the 

truncated, thin conical shell  (including the cylindrical shell as a special  

case) with respect  t o  axisymmetric longitudinal excitations. This  informa- 

tion will be useful, for example, in handling longitudinal vibration problems 

of complex launch vehicle s t ructures  which include a number of cylindrical 

and conical shells in tandem arrangements .  

These basic  impedance character is t ics  ( t r ans fe r  ma t r ix  or  four - 

FOUR-POLE PARAMETER VIBRATION 
ANALYSIS O F  STRUCTURES 

Consider a l inear,  elastic, s t ruc tura l  element which has  a single 

input terminal ,  with oscillatory input fo rce  F1 and velocity V1, and a single 

output terminal ,  with oscillatory output fo rce  F 2  and velocity V2. Under 

the res t r ic t ion  that no dynamic instability occurs, the relation between 

these four quantities can be uniquely descr ibed by a l inear t ransformation:  
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F1 = a l l F 2  -I- a12V2 

where the four coefficients a i j  a r e  te rmed four -pole pa rame te r s1  which 

a r e ,  in general, frequency-dependent complex quantities. When damping 

is considered in the system, a i j  will generally comprise  both r e a l  and 

imaginary par t s ;  but, if damping is  neglected, a l l  and a22 reduce to  real ,  

dimensionless numbers,  whereas a12  and a21 become pure  imaginary, 

the fo rmer  having the dimension of mechanical impedance (force/velocity,  

or  mechanical ohm) and the latter having the dimension of mobility or  

mechanical admittance (velocity/for ce) . 

F o r  those elast ic  systems which consist of a finite number of 

simple,  lumped elements (mass l e s s  springs and rigid masses ) ,  the four-  

pole pa rame te r s  can always be written in simple algebraic  forms .  How- 

ever,  when the elast ic  sys tem contains elements with distributed mass and 

stiffness, the four -pole parameters  become complicated transcendental  

functions of the input frequency and, in most  cases ,  cannot be obtained 

in closed fo rms .  It will be shown la te r  that, for a continuous element such 

a s  a nonuniform column or  the conical shell  under consideration, for 

which the force and velocity variables a r e  governed by a pa i r  of coupled, 

f i r s t  -order  differential  equations, an efficient numerical  integration pro-  

cedure may  be used to  calculate the required four-pole pa rame te r s .  
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Moreover, since such a n  e las t ic  element always possesses  an  

infinite number of natural  frequencies ( i .  e . ,  infinite degrees  of freedom), 

regard less  of the imposed boundary conditions a t  the two terminals ,  the 

electr ical  circuit  analogies for such a mechanical four -pole element, 

[F ig .  l ( a ) ]  cannot be exactly represented by a finite number of simple capa- 

c i tors  and inductors.  :% Using mobility circuit  analogy ( force-cur ren t ,  

velocity-voltage analogy), one can construct an exact circuit  representa-  

tion either by incorporating an  infinite number of capacitors C1, Cz9 

and inductors L i p  Lz, . . * ,  L n t l 9  ar ranged  a s  shown in the left of F ig -  

. )  Cn, 

u r e  l(b), or by using equivalent impedances of transcendental  expressions 

Z l P  Z 2  and Z 3 ,  as shown in the right of F igure  l (b ) .  Due to  the lack of 

symmetry  between the two terminals "1" and "2" of a conical shell, the 

two equivalent impedances Z1 and Z 2  will not be equal as in the case  of 

the uniform bar  or cylindrical shell. The relat ions between these equiva- 

lenw: impedances and the four-pole pa rame te r s  can be obtained f rom 

Reference 1, as follows: 

1 - 
a12 - - 

z 3  

Z l Z z  t Z2Z3 t Z3Z1 

z 3  

z 1  t z 3  
z 3  

a =  22  a =  
21 

It may  be noted that the four-pole pa rame te r s  a i j  can be expressed i n  

~ 

'6Resistors a r e  not used because damping effects a r e  not considered in 
the following analysis .  
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t e r m s  of only three  independent impedance pa rame te r s ;  this  is because 

the sys tem obeys the reciprocity principle so that aij  must  satisfy the 

r e  s t  raint  condition 

= 1  
a l l  “12 

aZ1 a22 

This condition may be used as  an accuracy cr i ter ion to  check the numerical  

r e sult s . 

F o r  smal l  frequencies which a r e  well below the lowest frequency 

at  which any of aij  vanishes, the equivalent impedance pa rame te r s  reduce 

to  the approximate form as shown in  Figure 1( c).  

parameter  Z 3  reduces to  a simple capacitor, with the magnitude equal 

to  the total  m a s s  of the cone, while the other two parameters ,  Z1 and Zzp  

reduce t o  simple inductors, which represent  the elast ic  property of the 

cone. 

In this case,  the 

TRANSFER MATRIX OF A TRUNCATED CONICAL 
SHELL IN AXISYMMETRIC VIBRATIONS 

In the following, we shall  consider the analytical calculation of the 

four  -pole pa rame te r s  a i j  for  a truncated conical shell  in axisymmetr ic  

vibrations.  No boundary conditions a r e  prescr ibed  except the res t r ic t ion  

that all the boundary quantities a re  harmonic with the excitation frequency 

W .  It will be assumed that, for thin conical shells with a no l a rge r  than, 
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say, 45", the axisymmetr ic  vibrations may be satisfactorily governed by 

membrane  theory.  Thus, there  a r e  two equations of motion, 

1 
NL t - (N,  - Ne) = phii 

S 

1 - - N e  cot a = phw 
S 

' and two s t r e s s  -displacement relations, 

u t w  cot a 
S 

Ns = Eh ( u ' t v  
1 - .2 

N e =  1 - v2  S 

Eh ( u  t w  cot a t vu ' )  

where s is  the meridional distance measured  f rom the vertex, p r ime  

denotes differentiation with respect t o  s, dot denotes t ime differentiation, 

and the other notations a r e  given i n  the Nomenclature. 

steady-state harmonic motions of the shel l  a r e  under consideration, the 

t ime dependence of a l l  the s t r e s s  and displacement variables may be put 

in the usual  form eiwt; therefore, in the following analysis, the factor 

eiot will be ignored, and the t ime differentiation may  be replaced by the 

operator io; e .  g . ,  

Since only the 

F o r  convenience, we shall introduce two new variables  defined 

by I 
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F = -2.rrsNs sin a cos a 

U = -u cos a t w sin a 

which represent  the resultant axial force t ransmit ted through the cone and 

the axial  displacement, respectively. It may be noted that, a t  the input 

te rmina l  (major  base), s = SI, the force  and velocity a r e  

and, at  the output te rmina l  (minor base),  s = y s l ,  the force and velocity 

a r e  

Using Eqs.  (6)  t o  eliminate Ns and w f rom Eqs. (4) and (5) and 

introducing the dimensionless spatial coordinates 6 = s / s l ,  we can wri te  

the governing equations in  the following form: 

2 2 2 -1 v t a n a  F - ( 1  - a  2 2  6 )u] 1 2rEh u = cos a(cos a - a 6 ) 

2c u cos a t u] - Eh - -  
Ne a s in  a cos a 

d F  - = -2i~EhS2~5U csc  a 
d5 

in which the dimensionless frequency pa rame te r :  



8 

s2 = w / w o  

with 

The set  of Eqs .  (9)  i s  of second order  and in a convenient f o r m  for numer i -  

cal  integration. It may be noted that a singularity exists a t  the frequency 

a t  o r  above which the coefficient of the f i r s t  equation of Eq. (9)  tends to  

infinity. 

Independent numerical  integrations of Eqs.  (9)  for two se t s  of initial 

values, (F, U) = (1, 0) and (0, 1) at 5 = y t  will yield two se t s  of influence 

coefficients, (F, U) = (p11, p21) and (p12, p22)  a t  6 = 1, respectively.  

provides the t ransfer  ma t r ix  [p i j ]  that  re la tes  the boundary values of (F, U) 

a t  5 = 1 and y. 

This  

where the subscript  1 r e f e r s  t o  the input end 5 = 1, and the subscript  2 

r e f e r s  t o  the output end 5 = y. 

t e rmina ls  a r e  given by: 

Since the axial  velocities a t  the two 
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I V1 = iwU1, V2 = i oU2  

therefore,  there  follows f rom Eq. (12), 

Comparing Eqs.  ( 13) to  Eqs. ( l ) ,  we find the four -pole pa rame te r s  

In the calculation of Pij, a standard subroutine for numerical  integration 

may  be used to  integrate Eqs. ( 9 ) .  

SPECIAL CASE OF THE CYLINDRICAL SHELL ( a  = 0) 

The set  of Eqs .  (9)  i s  not in  a suitable form for the special  case  

of the cylindrical shell  ( a  = 0 ) .  

equations for cylindrical shel ls  have constant coefficients, it is possible 

to  obtain closed form solutions. 

However, since the governing differential 

- 
Referring to  the dimensionless coordinate x = x/a ,  where x is  the 

meridional distance measu red  from the output te rmina l  Il.2, " it  can be 

shown that the governing Eqs .  (4) and (5) may be reduced to  a single 

second-order differential equation fo r  u, 

d2u 

dx2 
- t A2u = 0 
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where 

h2 = 52q1 - ( 1  - "2)s22] 

( 1  - 522) 

with the frequency parameter  52 defined in Eqs .  (10).  

Eq;. (15) has  a singularity at  52 = 1 [cf.  Eq.  ( 1  l ) ]  

the applicability of membrane  shell theory.  

to  the frequency range S2 < 1, then A has  a r e a l  value, and the general  

solution of Eq. (15) may be written in the form 

It i s  obvious that 

or w = wo9 which l imits  

We shall  r e s t r i c t  our attention 

u = A sin Ax t B cos Ax 

F r o m  the f i r s t  equation of Eqs.  (4), we have 

2 
( A  cos Xx - B sin Xx) phaw 

- A  
Nx = 

Introducing the axial force and axial displacement var iables  with equivalent 

definitions as Eqs .  (6) ,  we obtain 

( A  cos Ax - B sin Ax) F =  - 2-rpha2u2 
A 

U = - ( A  sin Ax t B cos Ax) 

Therefore,  at  the input terminal, x = a/a, where 1 i s  the length of the 

cylinder: 



11 

- B s in  - 
a 

- AQ 
A a 

F1 - - 

a 
A sin - t B cos- 

AQ 
a 

and, a t  the output terminal,  x = 0, 

2 2  - 21~pha w A F2 - - 
A 

U2 = -B 

Elimination of the integration constants A and B f rom Eqs. (19) and (20) 

yields 

AP 2rpha 2 2  w sin - AQ - 
A a 

AI 
AQ A s in  - 

a 
2rpha 2 2  w a 

cos - 

This  gives the des i red  t ransfer  mat r ix  [pij] for cylindrical shel ls .  

the relations,  Eqs. ( 1 3 ) ,  the four -pole pa rame te r s  may be readily obtained 

Using 

in closed form valid for w < w o :  

a l l  = a22  = cos A 

a12 = iwmA-1 sin A 
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in which, A =  XQ/a, and m = 2.rrphal is the total  m a s s  of the cylindrical 

shell .  

the condition (3) .  

It may be noted that the parameters  a i j  given by Eqs .  (22)  satisfy 

Substitution of Eqs.  (22)  into the relations ( 2 )  gives the equivalent 

impedance pa rame te r s  for the cylindrical shell: 

- ( 1  - cos A)Ai z 1 =  z2 - 
mu sin A 

- n 
‘3 - m w i  sin A 

which define the mobility circuit  analog in F igure  l (b) .  

w << u0) and the shell is  not too long, then A << 1, and Eqs  

the following approximate expressions : 

If w i s  smal l  (is e .  

(23) reduce to  

,. A2i - Q w i  
z1 = z2 - - - - 

2mw 4.rrEha 

which have the expected form defining the approximate circuit  analog in  

F igure  l (c ) ,  with the inductors L1 = L2 = ( Q  1 2 )  
Eh( 2-r~ a) 

, and the capacitor C = m 

It should be pointed out that, a s  w approaches wo, the parameter  L 

i nc reases  without bound; therefore,  the four -pole pa rame te r s  become 

infinitely oscillatory, i. e . ,  have infinite number of maxima and minima 

within an a rb i t ra r i ly  smal l  frequency interval  enclosing w0. Therefore ,  
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when the excitation frequency i s  near or above this singularity, a m o r e  

accurate  bending theory of shell  is needed to  co r rec t  the membrane  solution. 

The calculated four-pole parameters ,  aij, for the th ree  shell models 

descr ibed below, a r e  shown in Figures  2-4, in which the frequency singu- 

la r i t i es  a r e  indicated by vertical  dashed l ines near  6000 cps.  

IMPEDANCE EXPERIMENTS OF CONICAL SHELLS 
SUPPORTING AN ARBITRARY MASS 

It is evident that Eqs .  (1) provide two equations for  four unknowns, 

the two te rmina l  forces  and the two te rmina l  velocities, and therefore  

represent  an indeterminate se t .  This is ,  in fact, an advantageous feature  

of the method which permi ts  versat i le  applications of the character is t ic  

four -pole pa rame te r s  of s t ructural  elements.  When the two te rmina ls  

are  connected t o  other elements in  any complex mechanical circuit  system, 

such a s  various stages of a launch-vehicle s t ruc ture  or i t s  payload 

assembly, two additional conditions a r e  provided by the connecting joints 

In the present  study, the calculated four-pole pa rame te r s  will be 

experimentally tes ted through the following ar rangements :  the major  base 

of the conical shell  will be excited by an electrodynamic shaker with p r e -  

sc r ibed  input level and sweep frequency control, while the minor  base will 

be attached to  a rigid m a s s  M (Fig.  5).  

is known, the boundary condition at  the output te rmina l  can be readily 

Since the impedance of the m a s s  

obtained: 
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F2 = MwiV2 

. 

Substitution of the above into Eqs. (1) yields 

F r o m  these,  one can easily calculate the input impedance 

and the t ransfer  impedance 

Since, as mentioned before, a12  and a21 a r e  pure  imaginary,  while a l l  

and a22 a r e  real ,  both 211 and Z 1 2  a r e  pure imaginary quantities, indi- 

caring the usual 90" phase-shift between the force and velocity var iables .  

In the correlation between calculated and measured  resul ts ,  only their  

absolute value s 1 Z 1 and 1 Z12  I need be considered. 

It may be noted that two special  cases  of Eq. (25) a r e  of par t icular  

in te res t  i n  view of their  relation to  the numerical  calculation of pij a s  well 

as fo r  their  own physical significance. 

which implies  F2 = 0 .  

immediately give F1 = a12 and V1 = a22 .  

The f i r s t  case  is  M = 0 ( f r ee  end), 

If we set  V2 equal to  unit velocity, Eqs. (26)  

The second case is M = 00 
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I (blocked end) which implies V 2  = 0 .  If we now set  F2 equal to  unit force,  

Eqs .  (1 )  yield F1 = a l l  and V1 = aZ1. Therefore,  ( a l l ) - '  r ep resen t s  the 

force t ransmissibi l i tyfor  the case of blocked end, and (az2) -' represents  

the velocity t ransmiss ib i l i ty for  the case  of f r ee  end. 

APPARATUS AND EXPERIMENTAL PROCEDURE 

Figure 5 shows a schematic diagram of the overal l  apparatus used 

for impedance measurements .  

models have been investigated in  the experiments;  their  detailed dimen- 

sions a r e  given in Table 1. 

Two conical and one cylindrical shell  

TABLE 1. DIMENSIONS O F  THE SHELL MODELS 

Model 
No.  

1 
2 
3 

Cone Radius Radius Thickne s s Net Weight 
Angle, a a ( in . )  b ( in . )  h ( in . )  of Shell (lb) 

0 , 6 7 0  
15" 5 . 0  2 . 5  0 . 0 0 5  0 . 3 2 3  
30" 5 . 0  2 . 5  0 . 0 0 5  0 . 1 6 7  

0" 5.0 5 . 0  0 .005 

All the three  models were made  of tempered mild-s teel  sheet-stock 

which was rolled and butt-welded along a generatrix,  with negligible dis - 

continuity at the seam.  

through a steel, upper end-plate which was spot-welded t o  the upper ( o r  

smal le r )  edge of the shell .  Two rows of 0.020-in. diameter  spots, spaced 

a t  1/8-in,  center- to-center ,  were used in the welding to  secu re  firm con- 

nections. The total  weight of the upper end-plate and supported m a s s  was 

Each specimen was made  to  support a rigid m a s s  
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3 2 ,  8 lb  which was much heavier than those of the shells.  It was selected 

such that the resonance of the f i rs t  longitudinal mode of the sys tem would 

occur below 400 cps, the estimate frequency l imit  for accura te  experi-  

mental  investigations ( s e e  discussion below). 

The major  base of the specimen was s imilar ly  spot-welded to  the 

lower end-ring ( a  s teel  annular plate weighing about 15 lb), which was 

mounted on a thick, s teel  base-plate through four piezoelectric force t r a n s -  

ducers .  

electrodynamic shaker .  

The ent i re  arrangement was then bolted to  the a rma tu re  of an 

Throughout the design, special emphasis has  been placed on main-  

taining high rigidity in all p a r t s  relative to  that of the shel l  models s o  that 

the usual mass-cancellation procedure may be used to eliminate the iner t ia  

fo rce  of the lower end-ring, 

signal f rom this end-ring was properly scaled and inverted, then fed into 

the force signal to produce a vector cancellation (F ig .  5).  

checkout of this procedure by exciting the end-ring alone indicated that it 

was rigid enough to  produce only inertia-force signal up to  about 500 cps9 

and s tar ted to show appreciable e las t ic  deformation a t  about 600 cps ,  

Therefore ,  no experimental data were  taken beyond this frequency, 

Thus, a portion of the resultant acceleration 

Pre l iminary  

The experiments were designed to  measure  both the driving-point 

impedance a t  the base of the shell a s  well a s  the t ransfer  impedance 

through the specimen. The input force  F1 was measured  a s  descr ibed in 
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the preceding paragraph, and the accelerations a t  the two te rmina ls  were  

measured  by piezoelectric accelerometers .  Integrations of the acce le ra -  

tion signals ( to  give direct  velocity readings) a s  well as the m a s s  cancella- 

tion procedure were  performed electronically through operational amplif iers  

Narrow-band frequency f i l t e rs  were also used t o  fi l ter  out high frequency 

noise f rom various sources .  

then displayed on an  oscilloscope for examination and recorded through a 

digital voltmeter.  

tions at  low input levels and maintaining good accuracy throughout the 

experiments.  

The output force and velocity signals were  

The high sensitivity of the t ransducers  allowed excita- 

RESULTS AND DISCUSSIONS 

The numerical  resu l t s  presented h e r e  were  calculated on a CDC- 

3600 computer. In the calculation of the t r ans fe r  mat r ixo  pij8 for conical 

shel ls ,  a numerical  integration subroutine using fifth-order Adams 

method:: was incorporated in the program for integrating E q s ,  (9) e 

calculated four-pole parameters ,  ai j ,  of the three  shell  models a r e  shown 

graphically in F igures  2-4. 

The 

If we u s e  the reciproci ty  condition ( 3 )  as an  

accuracy criterion, the resu l t s  indicate that the numerical  integration 

procedure introduces higher error  a s  the frequency approaches the s in-  

gularity (6212 cps for the 15" cone, and 5569 cps for the 30" cone). F o r  

example, for the 15" cone, the e r r o r  is about 470 a t  4000 cps and inc reases  

:gThe subroutine, writ ten by R .  H. Hudson, is a self-s tar t ing variant of 
the Adams method incorporating automatic s tep-s ize  control. 
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to  12% a t  5000 cps;  for  the 30" cone, the e r r o r  is  3'7'0 at 2000 cps and 

inc reases  to  8'7'0 at 3000 cps. 

e t e r s  become infinitely oscillatory as  the frequency approaches the singu- 

lar i ty;  therefore,  the e r r o r  is inherent t o  the ill-behaved Eqs .  (9)  near  

this frequency and cannot be eliminated by the s tep-s ize  control in the 

integration process  . 

As mentioned before,  the four-pole p a r a m -  

The correlation of the calculated and measured  impedances, Z1 

and 2121 a r e  shown in F igures  6-8. It may be seen that the agreement  i s  

in general  very good. In Figure 7, some unusual scat ter ing of the input 

impedance Z l l  may be seen near 250 cps.  Careful examination showed 

that this  was a resul t  of dynamic instability of geometr ic  imperfections 

along the butt-joint seam, which showed excessive la te ra l  vibration at  

this  frequency. In Figure 8, the so-called "spli t-resonance' '  was observed 

in the experimental  data of the input impedance Z l l ,  which exhibited two 

sharp  peaks with close frequencies ( the f i r s t  peak a t  about 380 cps and 

the second a t  about 410 cps, whereas the calculated resonance is  392 cps).  

This  may a l so  be associated with some model imperfections,  but no 

definite explanation can be found. 
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PLAN FOR RESEARCH DURING THE NEXT QUARTER 

During the next quarter ,  it is planned to  continue on both the analyti- 

cal and experimental work to determine the (4  X 4) t ransfer  matr ix ,  driving- 

point impedance and t ransfer  impedance of the conical shell  under la te ra l  

excitations Since the beam-type bending and t r ansve r se  shearing modes 

are  always coupled, it is  equivalent to  coupled e lec t r ic  c i rcui ts  with eight 

poles.  In the experiments,  we have res t r ic ted  our attention to  pure  t r a n s -  

lational vibrations at  the input end, but the responses  of the attached mass 

a t  the output end have both a translational and rotational component. Both 

the analytical and experimental  work on this phase a r e  presently well 

under way and a r e  expected to  produce satisfactory p rogres s  during the next 

qua r t e r .  
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FIGURE 3 .  FOUR-POLE PARAMETERS FOR THE 
15" CONICAL SHELL MODEL 



25 . 

10' 2 4 6 8 103 2 4 6 8 104 

Frequency, cps I280 

30" CONICAL SHELL MODEL 



. 26 

Mass & End - Plate ( 32.8 I b 1 

- 4 

Shell Mode 

Console 
Osci I lator 

Tracking 
Filter 

0 0 0 0 0  0 0 0 0 0  

Frequency Digital 
Counter Osci I loscope Vo I t mete r 

1289 

FIGURE 5, SCHEMATIC DIAGRAM O F  E X P E R I M E N T A L  APPARATUS 



27 

4 6  

Frequency, cps 

FIGURE 6 .  INPUT AND TRANSFER IMPEDANCE F O R  THE 
CYLINDRICAL SHELL SUPPORTING MASS 

I272 



. 
Frequency, cps 

8 104 

I276 
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APPENDIX 

LISTING OF COMPUTER PROGRAM AND FORMAT 
O F  I N P U T  DATA CARDS 

c PROGRAP CONEIMP 
T PROJECT 0 2 - 2 0 3 4 S W R O O O l O  
C C D C  3600 FORTRAN S w R 0 0 0 2 0  

D I M E N S l O N  Y ( 2 ) , F ( 2 ) , 8 ( 2 0 ) , T L ( ? )  S U R 0 0 0 3 0  
D I M E N S I O N  F R Q ( Z ~ ) , F R Q X ( ~ O ) D F R O N ~ ~ O ) D F ~ ( ~ ) , U ~ ( ~ )  SWR00040  

20no R E A U  2170, h l ~ Y l 0 p T  SWROOOhO 
2 0 0  FORMAT ( 2 1 5  ) SWR00070  

I F  ( E o F , 6 0 ) 8 0 ~ 8 5  S W R O O O B O  
R O  STDP S W R 0 0 0 9 0  

C *+*  GEOMETRIC PARAMETERS SWROOlQO 
85 READ 2 0 5 ,  A,SB,ALPHA,M SWROOl lO  

2 0 5  FORMAT ( 4 F 1 0 . 0  ) SWR00120  
C *** M A T E R I A L  PARAMETERS S U R 0 0 1 3 0  

READ 23O,ENUiE,RHO SWR00140  
2 1 0  FORMAT ( F10,0,2El0.2) S U R 0 0 1 5 0  

C * * *  R I G I D  MASS SWR00160  
READ 2 1 5 ,  UT SWR00170  

215 FORWAT ( F10,O ) SHROOlRO 
R M  a W T / C l  SWROOlOO 
ALFH 6 C2*ALPHA S W R 0 0 1 9 1  
DCN = C O S F ( A L F R )  SWR00192  
nSN S I N F ( A L F R )  SWR00193  
WOSQ = E / ( R H O * A + A )  9 W R 0 0 1 9 4  
W o  8 SORTF(W0SQ) S U R 0 0 1 9 5  
WS a Wn*DCN SWR00196  
FS 8 W S / ( 2 . 0 * P I )  SWR 0 0 1 9 7  

C *I* FHEQUENCV RANGE SWROOPOO 
R E A D  230, ( F R Q ( I ) . F R O X ~ I ) , F R Q Y ( I ~ , ! ~ i , ~ )  SWR00210  

270 FORMAT ( 3 F l O . 0 )  SWR00220  
P R I N T  3 0 0  SWR00230  

3017 F O R M A T ( 1 H 1 , 3 o X , 6 o H  CONICAL SHELL L O N G ~ T U D I N A L  IMPEDANCE PROGRAMSWROO240 
1 - W.C.L. H U / / 6 8 U  COMMEYT - T H l S  PROGRAM C A L C U I A T E S  TRANSFER H A T R I S U R 0 0 2 5 0  
2X R E T A T J ( 0 M E G A )  AND/IOX,58HFOUR-POLE PARAMETFRS A L P H A I J ( 0 M E O A )  FORSWR00200 
3 CCINICAL SHELLS/ IOX,61HUNDER L O N G I T U D I N A L  E X C I T A T I O N D A L S O  CALCSWR00270  
4 U L A T E S  INP lJT  T M P E O A ~ C F / l O X , 6 2 Y 7 1 1 ( n M ~ G A )  AND TRANSFER IMPEOANCE ZlSUROOZRO 
5 7 ( O M F G A )  WHEV 4N A R E l T R A R Y / l O X , 4 4 ~ M A S S  M IS ATTPCHFD TO THE OUTPUTSWR00290 
6 T E R M I N A L  2.) S W R 0 0 3 0 0  

P R I N T  305, ADSBIALPHA,H SWR00310  
3 0 5  FORMAT ( l H O i 2 8 H ! N P U T  - GEOMETRIC PARAMFlERS/BX,22HMAJOR BASE R h D I U S W R 0 0 3 2 0  

1 S  A 8 .F4.11 BH I N C H ~ S , I ~ X . ~ ~ H M I N O R  RAqE RADTUS A m ,F4 ,1 ,  8H INCHSWROO330 
2 E S , , 3 X 1 2 5 H S E M I V E R T E X  ANQLE ALPHA a , F 5 . 1 ,  9 H  DEGREESi~/BX,14WTHICKSWR00340 

SWR00350  3 N E S S  H m , F 6 , 3 .  8 H  INCHES.) 
P R I N T  310, EIENUDRHO SWR003.40 

nATA (PIc3.14159265),(C~~3R6.O)~(C781,745~?9?5F~O7~i(~RR=l.E95) SWROOO5Q 

310  FORMAT ( I H O D ~ I H I N P U T  - r A T F R I 4 l  PARAMETERS/BX, l9HYOUNQS MODULUS E S W R 0 0 3 7 0  
1. s E @ , l r  5 H  P S I D D ~ X D ~ ~ ~ P O I ~ S O N S  R A T I O  NU 8 ~ F ~ . ~ ~ ¶ U , , ~ X D ~ ~ H M A S S  DESWR00380  
2 N S I T Y  RHO , E 1 0 , 3 r l 9 H  L B ( S E C ) * * Z / ( I N ) * * 4 )  SWR00390  

P R I N T  315, WT,RM SWROO4OO 
315 FORMAT ( l H 0 , 6 1 H C A L C U L A T E  IMPEDANCE Z i l ( O M E G A ,  AND 7 1 2 ( O M E G A )  FOR WSWROOIIO 

I F I G H T  W 8 oF9.1, 3 H  LR,4X, 1 l H (  MASS M * , F 6 . 3 . 2 ¶ H  L B ( S E C ) r * 2 / ( I N ) S W R O O 4 2 0  
2 ) / / I / / )  SWR00430  

P R I N T  320  SWRO0440 
329 FORMAT (1HOIJ2HCALCULATED FOR FREQlJENCY ( CPS ) )  S U R 0 0 4 5 0  

P R I N T  325 ,  ~ F R Q ( I ~ ~ F R Q X ~ l ~ , F R Q N ~ I ~ . I ~ l r N ~  SWR00460  

P R I N T  340, FSaWS S W R 0 0 4 7 1  
3 4 0  FORMAT ( lH0 ,ZPHFREQUENCY S I N G U L A R I T Y  0 FS m a F l O . 1 .  5 U  CPS,,4X, S U R 0 0 4 7 2  

1 9HOWFGAS 8 , F 1 0 . 1 ,  8U RAn/SEf ! )  S U R 0 0 4 7 3  
P R I N T  3 3 0  SUR0 0 4 8 0  

330 FORMAT (1H0,4X,4HFREQ,6Xs 5HOMECA,5Xi 6 H B E T A l l ' . 6 X , , 6 H B E T A 2 2 , 6 X ,  S U R 0 0 4 9 0  
1 6 H B f T A 1 2 , b x ~  6UBFTAP1,6X,  THAI P M A 1 2 r g X a  7 H A L P U A 2 1 . 5 X , S H Z l l ,  S W R 0 0 5 0 0  
2 9 x # 3 H z i 2 / 2 4 x D  B H * A L P H A I I , I X ,  RHaALPHAP2)  SWROO510 

325 FORMAT ( 8 X , 3 ( F 8 , 1 , 2 H  ( r F 7 . 1 r 2 H  ) r F 8 q l r 4 X ) )  SWR00470  

30 



I o n n  W = ?. f ‘ *P l*FREO 
WSrJ = w * w  
TMp = wSO/WOSQ 
T P 7  = WSQ/(WS*WS) 

F I ( 1 )  = 1 . 0  
U l ( 1 )  = n .  
F I ( 2 )  = 0 .  
1 1 l ( 2 )  = 1 . 0  
IF’  ( T C 3 . G T . O o 8 0 ) 1 5 , 1 0  

nx = ( 1  . n - $ 8 / ~ ) / 6 4 . n  

1 5  P R I N T  35n, FREQrW 
3 5 0  FORMAT ( 1 H  , ~ F ~ O . ~ S ~ X D ~ ~ ~ I Y F A R  OR AROVE S I Y G U L A R I T Y )  

G O  TO 55  

SwR005r lO 
S W R C I I - I ~ ~ ~  
SwROO560 
S W R 0 0 5 7 0  
SWR0062(1  
S W R 0 0 6 3 0  
S W R 0 0 6 4 0  
SWR00650  
S Y R O O h h O  
SWR00670  
SWRO06Rr) 
S W R 0 0 6 9 0  
SWR0070?  

S W R 0 0 7 7 0  
S W R O ~ ~ ~ O  

S W R I I ~ ~ ~ O  
S W H O ~ ~ ~ O  
s k i ~ u n 7 5 0  
s k ~ o n 7 h n  

s b R n n 8 n o  

S U R 0 0 7 7 0  
SHR007RO 

SWROORlO 
S*R00830 
S U R 0  0 6 3 0  
S W R 0 0 8 4 0  
S W H 0 0 8 5 0  
SWROOBhO 
S k R O O R 7 0  
SWROO930 
SWR00940  
s w ~ o n 9 5 n  
s w ~ ( i n 9 6 n  

s w ~ o n 9 6 7  

s b ~ 0 0 9 7 n  

SWRU0961  

S M R 0 0 9 6 3  

S W R 0 0 9 4 0  
SWRDO990 
S w R O l O O f l  
SWROl 001 
S k R O l O r ) 2  
S*RO 1 0  0 3 
SWROI On4  

SWR010‘16 
S W R U l O l O  
S W R O l 0 2 0  
Sr iRO 1 0  3 0  
S W R 0 1 0 4 0  
SWROlOJO 
S W R O l 0 6 0  
S W R 0 1 0 7 0  
S W R 0 1 0 9 0  
S W H 0 1 0 9 0  
S W R O 1 1 0 0  

S W R O I O ~ ~  

S W R O l l l O  
S W R O l l Z O  
SWRO1130 
S W R O l l 4 0  
S W R O l l 5 0  

sw H [I 11 7 0  
S W R O l l 8 O  
SWRO1190 

~ ~ ~ 0 1 1 ~ 0  



32 

K 
T 
c1 

N 
Y 
F 
D E L T A Y  
P 
N T L  
TL 
NPL 
P L  

C O N T R O L  I N T F G c ' R  F O R  uSFR S T f i T F M E N T S  
I N D E P E N O ~ ~ T  V A H I 4 H L E  
I N T E G R A T I O N  STEP SIZF 
NUMBFR nF F I R S T  n R D E 4  E Q U A T I O N S  
IUEPENDENT V A R  I AEL ES 
!)ER I v A T  I V ES 
F R Y O R  C O N T R O L  V E V O H  
TEMPORARY S T O Q A G F ,  O l M E N S I n N  l O + h l  
,\IUflflER OF E N T Q I E S  Iiu T L  
I L I S T  OF I N T F H l l P T  T I M C S  
SlUMBFR OF E N T R I E S  I 9  P L  
1. I S T  OF I Y T F H  J P T  F U  J r T  I O h l S  

EQU I V A L E N T  
OF 

A D A M S  

P R E D I C T F D  G E R I V A T I V E S  
Y A T  S T A R T  OF I N T E G R A T I O N  S T F P  
S E C O N D  P R E C I S I O N  P A R T  OF Y AROVE 
F A T  S T A R T  OF I Y T E G R A T I 3 N  S T F P  
H O L E  FOP I ~ T T I A L  Y U H I L E  S T 4 R T I N G  
S E C O N n  PRECISIOY P A R T  OF Y 

D I F F F R E N T E S  

I N T E G E R  
R E A L  
R E A L  
T N T E G E P  
R E A L  
R E A L  
R E A L  
R E A L  
I h T E G E R  
R E A L  
I h T E G E R  
R E A L  

I F  ~ H . L f . ~ . O R . N , L F ~ O ~ ~ R . ~ , ~ T . 2 ~ ~ ~ ~ ~ ~ . ~ T ~ , L T , ~ , O R . N T L , G T , 5 O ~ , O R , N P ~ N O R D O 4 ~ ~  
X . L T . F . 0 S . N P L 1 G T , 5 ~ 0 . 0 R , D E ~ T A Y . I  E . ~ . O R . T , L T . o )  N O R D 0 4 3 0  

N C R D 0 4 4 0  
N O R D 0 4 5 Q  

S E T  S U R R O U T I N E  c O V N T E R S  AYD S T F P  SIZE D A T A  N O R U 0 4 6 0  
N O R D O 4 7 0  

H M A X E H M I N = ~ D E R = I E O S = I T L ~ I ? ~ ~ ~ S T F P ~ O  N O H D 0 4 8 O  
N O R 0 0 4 9 0  

N O R D O 5 1 0  

X C A L L  QRQERROR ( 0 1 3 4 H E R R O R  IN FJORDSET CALLING SEQUENCE,) 

C O N T R O L  S E C T I O N  F O R  S T A 3 T I N G  I M T E G R A T I O N  N O R D  0 5 n o 

ASSIGN 3 0 0 0  T O  K F L I P  

3000 H = ~ . A N D . ~ ~ ~ ~ ~ O O O O O O O O O O O ~  
GU T O  1 U O 1  

DO 3002 J = l p N T L  
IF ( T . F Q . T L ( J ) )  3001,3002 

3 O n l  ASSIGN 3 0 0 2  T O  K F L I P  
GO T O  3002 

3002 C O N T I N U E  
T L E F T S T  
DO 3 0 0 4  J = l I N P L  

NOR11 0 52  0 
N O R D O 5 3 0  
N O R 0 0 5 4 0  
N O R D O 5 5 0  
N O R D 0 5 6 n  
N O R U 0 5 7 0  
N O R D O 5 8 0  
NOR11 0 5 9 0 
NORU 0 6 n 0 
NOR DO 6 1  0 
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c: C O N T R O I  S F C T  I ON F O R  T I M E  I N T E H I I P T S  D l l R  1 NG N O P V A L  I h l T E G R A T  I O N  
r S T A T E M E N T  1 7 n 0  r 4 l T F G Q A T F S  F O R W A R I 7 , R F t U R N I N G  T O  1 7 0 1  
r 

1 7 0 0  G O  Tn 1 6 0 0  
1701 n o  1 7 ~ 3  I=I,N 

P(6,I)=Y(I) 
1 7 0 2  R(R,I)tF(I) 

T S A V E r T  
1 7 0 3  7 = 2 . * T S A V E  

D O  1 7 0 5  I = l , N T L  
I F  (TL(I).LT,Z) 1 7 0 4 , 1 7 0 5  

J= 1 

I F  ( 7 . C f . T S A V E )  0 0  To 1 7 0 7  
A S S I G N  1 7 0 6  T O K F L T P  
R T E S T 8 T S A V E / Z  

1 7 0 4  Z=TL(I) 

1705 CONTINUE 

R T ~ S T . R T F S T . A N D . , h l O T . 3  
I F  ( R T F S T . F Q , 1 . 0 1  1 7 0 5 1 , 1 7 n 5 3  

1 7 0 5 1  DO 1 7 0 5 2  l s l r N  

T Z T S A V F  
1 7 0 5 2  Y(l)mB(6,I) 

G O  TO i o n 1  
1 7 0 5 3  HPIZ-TSAVk  

ASSIGN 1 0 0 1  T O  I S T W O  
G O  T O  1 2 0 0  

1 7 0 6  A S S I G N  1 7 0 3  T O  K C L I P  
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I -  1 7 0 7  

1 7 n P  

177 fl 

1 7 1  1 
1 7 1  7 

c 
C 
C 
c 
c 

2000  

2010 

C 
c 
C 

I h T E G R A T E  9NE S T E P  

S A V F  C O N D I T I n N S  AT S T A R T  OF S T F P  

F Y T R Y  F O R  H A L V E O  S T E P  

N O R l 1 1 2 n o  
N O R 1 1 1 2 1 0  
Y O G  I ]  123  ;I 
Y OR 111 2 3 0 
W O R f i 1 2 4 0  
N 0 Fc Li I 7 5 
NOH111260 
V O R D 1 2 7 0  
N O R b 1 2 9 0  
hl O W  D 1 2  9 fl 
M O f f  l l 1 3 Q r l  
Y O R G 1 3 1 n  

e lJ 1 3 ? f I  

N O k U 1 3 4 0  
~ 0 ~ 0 1 3 3 n  

~ 0 ~ 1 1 1 3 5 0  
w o ~ r i t  3150 
N O R b 1 3 7 9  
MOR 0 13 4 0 
N 0 H 13 1 3 9 0 
h l O R U l 4 1 I O  
V O R l l l 4  19 
W O R I l 1 4 2 0  
N O R  ij 1 4  3 0 
W O R D 1 4 4 0  
N O R U 1 4 5 0  
Y O R D 1 4 6 0  
NOR 11 1 4 7 fJ 
NOR 4 R  0 
N O R 0 1 4 9 0  
N O R  111 5 0 0 
WORL115 l r )  
W O R D 1 5 2 0  
hl OR b 15 3 0 

NOR D l  55  0 
N O R D l 5 6 0  
N O R U l 5 7 0  
Y O R U 1 5 R O  
h l O R 0 1 5 9 0  
N O R U 1 6 n O  
N O R D 1 6 l n  

W O R D 1 6 3 0  
hJ 0 R 0 I 6  4 0 

N 0 R D 1 5 4 o 

Y O R ~ I I ~ ? ~  

41 0 R I3 1 6 5 (1 
WORDI~~II 
N O R D 1 6 7 0  
NORUl .680 
N O R D l . 6 9 0  
N O R D 1 7 0 0  
N O R 1 ) 1 7 1 0  
NOR I1 1 7  2 0 
N O R 0 1 7 3 0  
W O R D 1 7 4 0  
N O R D 1 7 5 ' 1  
N O R D l 7 6 n  
W 0 R 13 1 7 7 0 
NOR D 1 7 8  0 
N 0 R 1117 9 0 
N O C ) 0 1 8 0 0  
N O R D l 8 l O  



r: 
C 
c 

11Cln 

C 
c 
c 

R O U T I N F  T E S T P H 1 , F A L S E  E X I T  IS S l S O 0 , T R U E  E X I T  JS  1 8 0 0  

N O F i D 1 8 2 0  
rdOHi)1 8311 
?1 O R  i l l  R 4 (1 

N 0 R I1 I H 5 0 
hl O R  I 1  18 6 rl 
NOR 01 8 7 11 
N o R i J i  R e n  
N 0 R L) 1 A 9 ( 1  

MORI~I 9 0 11 
N O R l i l 9 1 1 1  
NOR I) Z 9 ?  11 
N 0 H U 1 9 3 rl 
N O R U l 9 4 0  
hlO R I l l 9  5 fl 
N O A D 1  960 
ht O R  11 1 9  7 0 
hl OR n 1 9 R n 
CI 0 R r )  19 9 0 

N O R U 3 0 1 0  

N O R U 2 0  3 0  
N O R U 2 0 4 0  
N O R D 2 0 5 0  
\I 0 R D 2 0 6 0 
N O R 0 2 0 7 0  
NORD?O A 0  
N O R D 2 0 9 0  
N O R 0 2 1 0 0  
N O R D 2 l l O  
N O R D 2 1 2 0  
N O R D 2 1 3 0  
N O R 0 2 1 4 0  
N O R D 2 1 5 0  
N O R D 2 1 6 0  
N O R D 2 1 7 0  
N O R D 2 1 8 O  
N O R D 2 1 9 0  
N O R D 2 2 f l 0  
NOR0321rl 
N O R D 2 2 7 0  
Y O R D 2 2 3 0  
NORD2240 

N O R D 2 2 6 0  
\I 0 R D 2 2 7 0 
U O R D 2 2 R O  
WORD2290 
N O R U 2 3 f l O  
N O R 0 2 3 1 0  
N O R D 2 3 2 0  
NOR IJ 2 3 3 0 
W O R D 7 3 4 0  

Y O R G 2 3 6 0  
W O R D 2 3 7 0  
N O R b 2 3 R 4  
N O R 0 2 3 9 0  
Y O R D 2 4 1 0  
NORD2410 
N O R D 2 4 2 0  
N O R 9 2 4 3 0  

N o R D 2 o n n  

N O R D ~ O ~ ~  

~ 0 ~ ~ 2 2 5 0  

~ 0 ~ n 7 3 5 0  
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N O R f i 2 4 4 0  
N 0 HI! 2 4 5 r] 
N O R D 2 4 f . 0  
N O R r J 7 4 7 0  
NOH112480 

N O R b 2 5 0 0  

NORu752r) 
hl0 R ti 25 3 0 
NOR112540 

N O R D 9 5 6  0 
NOk ('35 7 0 
N O R U 7 5 8 0  
N 0 R 1) 25 9 0 

N O R U 2 6 1 0  
N O R U ? 6 3 0  
N 0 f? r) 2 6 3 0 
N O R U 2 6 4 0  
N O R D 2 6 5 0  
hl OR I) 2 66 0 
L 0 R 1) 2 67  0 
N O R U 2 6 R O  
N O R U 2 6 9 0  
N O R D 2 7 0 0  
NOR 1127 l o  
N O R  u 2 7 2 0 
N O R D 2 7 3 0  
N O R 0 2 7 4 0  
N O R D 2 7 5 0  
W O R D 2 7 6 0  
N O R D Z 7 7 0  
N O R n 3 7 R O  
N O R D 2 7 9 0  
NOR02800  
W O R D 2 8 1 0  
N O R D 2 8 ? 0  
N O R D 2 8 . 3 0  
N O R D 2 8 4 0  
N 0 R I) 2 R 5 0 
NORU2860 
M O R D 2 8 7 0  
N O R D 2 8 R O  
N O R D 2 8 9 0  
N O R D 2 9 0 0  
N O R D 2 9 1 0  
W O R D 2 9 2 0  

W O R D 2 9 4 0  

N 0 R 11 2 9 6 0 
N O R 0 2 9 9 0  
N O R D 2 9 8 0  
N O R D 2 9 9 0  
NOR D 3 0 0 0  

~ 0 ~ 0 2 4 9 n  

r \ t o ~ n ? 5 i  (1 

N n R n 2 5 5  CI 

~ O R l l 2 h f I  CI 

N O R D ~ ~ ~  

~ 0 ~ n 2 9 5 0  



. 37 

Format  of Input Data for Conical Shell 

The u s e r  provides the following data cards  in the order  a s  l isted: 

(1) The f i r s t  card  gives two integers each in  a field of five columns. 

f i r s t  integer is  the number of frequency se t s  t o  be calculated ( s e e  

below). 

mediate resu l t s  of numerical  integrations are needed or nots ( 1  for 

printout and 0 for not printout). 

The second card  provides the geometr ic  pa rame te r s  of the cone: four 

floating-point numbers  each in a field of ten columnsp giving the major  

base radius  a, minor base radius b, semivertex angle a ( in  degrees)  

and shell  thickness h ( in  inches), respectively.  

The third card  provides the mater ia l  propert ies  of the cone: 

floating-point number in a field of ten columns, giving the Poisson ' s  

ratio, and two real numbers in exponential form, each in a field of 

ten columns (2E10. 2), giving Young's modulus E ( in  psi) and mass 

density p ( in  lb-sec2/in4),  respectively. 

The fourth card  gives the weight of the attached mass ( in  lb)9 a floating 

point number in a field of ten columns. 

Each of the remaining data cards gives a set  of input frequencies in 

cps.  F o r  example, the fifth card  should provide three  floating-point 

numbers:  

and the final frequency of the set, each i n  a field of ten columns. 

The 

The second i s  a boolean integer indicating whether the inter - 

(2) 

( 3 )  one 

(4) 

(5) 

the f i r s t  frequency of the f i r s t  set, the increment of the set, 

The 



3 8  

sixth card  should provide similar numbers  for the second set  of frequencies, 

e tc .  The total  number of s e t s  should be the same as the first integer in  

the f i r s t  data card .  

. 



E 

4 

c 
r, 
I: 

2 0 0 n  
2 ii $7 

P H I N T  
3 0 5  FORMA 

l F 4 . 1 ,  
2s H D 

P R I N T  

1 =  , E 8  
2 N S l T V  

P H I N T  
315 FORMA 

1E I GHT 
2)) 

P R I N T  

s i n  F I J R M ~  

i o n o  w 
WSQ 
TM2 
TM3 
TM4 
I F  

1 0  ALI) 
A R G  
E l l  

SWR00440 
SWR00450 
SWR00400 
SWR00470 
SWR00480 
SWR00490 
SWR00501) 
SWR00510 
SWR00520 
SWR00530 
SWR00540 

S W R 0 0 5 6 O  
S d R 0 0 5 7 f l  
SWR00590 
SWROn5VO 
SWRUfl600 
SWR00610 

S W R O ~ W ~  

S W R 0 0 6 2 0  
SWR00630 
SWR00640 
SWR00650 
SWR00660 
SWR00670  
SWR006RO 
SWR00690 

S U R 0 0 7 1 0  
SWR00730 
SWR0073b 
SWR00740 
SWR00750 
SWR007hn 
SWR00770 
SWR007Ar) 
SWR00790 
SWROO8OO 

S W R O O ~ ~ O  

39 
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Format  of Input Data for Cylindrical Shell 

The use r  provides the following data cards  in the order  a s  listed: 

(1) The f i r s t  card  gives the number of frequency sets ,  an  integer in a 

field of five columns. 

The second card  provides the geometr ic  pa rame te r s  of the cylinder: 

th ree  floating-point numbers each in a field of ten columns, giving 

the radius a, length 1, and wall thickness h of the cylindrical shell  

(a l l  in inches). 

The third card  provides the ma te r i a l  propert ies  of the cylindrical 

shell, same as the third data ca rd  for the previous case  of conical 

shell .  % frd&, c d  p"";L %& &&&A 
Each of the remaining data cards  gives a set  of input frequencies in 

cps, same as the previous case of conical shell .  The total  number 

of s e t s  should equal the integer in the f i r s t  data card .  

(2 )  

( 3 )  

(4) 


